pGluAβ increases accumulation of Aβ in vivo and exacerbates its toxicity

نویسندگان

  • Oyinkan Sofola-Adesakin
  • Mobina Khericha
  • Inge Snoeren
  • Leo Tsuda
  • Linda Partridge
چکیده

Several species of β-amyloid peptides (Aβ) exist as a result of differential cleavage from amyloid precursor protein (APP) to yield various C-terminal Aβ peptides. Several N-terminal modified Aβ peptides have also been identified in Alzheimer's disease (AD) brains, the most common of which is pyroglutamate-modified Aβ (AβpE3-42). AβpE3-42 peptide has an increased propensity to aggregate, appears to accumulate in the brain before the appearance of clinical symptoms of AD, and precedes Aβ1-42 deposition. Moreover, in vitro studies have shown that AβpE3-42 can act as a seed for full length Aβ1-42. In this study, we characterized the Drosophila model of AβpE3-42 toxicity by expressing the peptide in specific sets of neurons using the GAL4-UAS system, and measuring different phenotypic outcomes. We found that AβpE3-42 peptide had an increased propensity to aggregate. Expression of AβpE3-42 in the neurons of adult flies led to behavioural dysfunction and shortened lifespan. Expression of AβpE3-42 constitutively in the eyes led to disorganised ommatidia, and activation of the c-Jun N-terminal kinase (JNK) signaling pathway. The eye disruption was almost completely rescued by co-expressing a candidate Aβ degrading enzyme, neprilysin2. Furthermore, we found that neprilysin2 was capable of degrading AβpE3-42. Also, we tested the seeding hypothesis for AβpE3-42 in vivo, and measured its effect on Aβ1-42 levels. We found that Aβ1-42 levels were significantly increased when Aβ1-42 and AβpE3-42 peptides were co-expressed. Furthermore, we found that AβpE3-42 enhanced Aβ1-42 toxicity in vivo. Our findings implicate AβpE3-42 as an important source of toxicity in AD, and suggest that its specific degradation could be therapeutic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sleep Interacts with Aβ to Modulate Intrinsic Neuronal Excitability

BACKGROUND Emerging data suggest an important relationship between sleep and Alzheimer's disease (AD), but how poor sleep promotes the development of AD remains unclear. RESULTS Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragme...

متن کامل

Screening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons

Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...

متن کامل

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

بررسی اثر حفاظتی چند گیاه دارویی از خانواده نعناعیان بر سمیت القا‌شده توسط پپتید بتاآمیلویید در سلول‌های PC12

Background: Excessive accumulation of beta-amyliod peptide (Aβ), the major component of senile plaques in Alzheimer's disease (AD), causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with...

متن کامل

Comparison of Neuroprotective Effects of Melissa officinalis Total Extract and Its Acidic and Non-Acidic Fractions against A β-Induced Toxicity

  Alzheimer’s disease (AD) is a neurodegenerative disease that was characterized with deposit of beta amyloid (Aβ) aggregate in senile plaque. Oxidative damage to neurons and loss of cholinergic neurons in forebrain region are observed in this disease. Melissa officinalis is a medicinal plant from Lamiaceae family, used traditionally in the treatment of cognitive disorders. It has cholinomimeti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016